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H I G H L I G H T S
� Pore network model with the capillary valve effect (CVE) is developed.

� Two types of pore invasion are proposed.
� Simulation and experimental results agree well if CVE is considered.
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a b s t r a c t

The capillary valve effect is studied on the capillary force dominated immiscible two-phase flows in the
networks composed of regular pores and throats. Two types of pore invasion are revealed. One is
bursting invasion, where the invading fluid enters a pore from one throat. The other is merging invasion,
where a pore is invaded by the invading fluid from two throats. Drainage and imbibition are similar and
show capillary fingering pattern in the cases where bursting invasion dominates over merging invasion.
When merging invasion is dominant, a stable flow pattern can also be observed.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Immiscible two-phase flow in porous media is of great interest
to many industrial fields, such as oil recovery, CO2 sequestration,
and water management in fuel cells. Nevertheless, it is a challenge
to fully understand the two-phase flow in a porous material, since
it is affected not only by interactions between gravitational,
capillary, and viscous forces but also by the structure of the
pore space.

Porous materials contain pores of various sizes, such that small
pores may be connected to large pores with a sudden geometrical
expansion at their interfaces. This expansion can increase the
resistance to the advancement of the invading fluid and has
already been employed as a capillary valve to control the fluid flow
in microfluidic devices (Duffy et al., 1999; Cho et al., 2007; Chen et
al., 2008; Moore et al., 2011). When the invading fluid reaches an
cess Engineering, Otto von
rmany. Tel.: þ49 391 52280;
expansion interface, it will stop moving until its pressure increases
to a critical value. We call this as the capillary valve effect.

Pore network models have been commonly used to understand
the two-phase flows in porous media (Blunt, 2001; Sahimi, 2011;
Joekar-Niasar and Hassanizadeh, 2012). In this method, the void
space of a porous medium is conceptualized as a pore network
composed of regular ducts of various sizes. The two-phase flow in
a network is depicted by the prescribed rules. In the cases where
the capillary forces dominate, the invasion percolation algorithm
proposed by Wilkiinson and Willemsen (1983) has been widely
used (Blunt et al., 1992; Knackstedt et al., 1998, 2001; Mani and
Mohanty, 1999; Lopez and Vidales et al., 2003; Araujo et al., 2005;
Bazylak et al., 2008; Chapuis et al., 2008; Rebai and Prat, 2009; Wu
et al., 2010, 2012, 2013; Ceballos et al., 2011; Ceballos and Prat,
2013).

Only one network duct is invaded at each step in the invasion
percolation algorithm. This duct is the largest available one in
drainage, whereas in imbibition, it is the smallest available one.
Bazylak et al. (2008) compared the pore network simulations
against the experiments for slow drainage in networks of various
structures. Differences between them were always observed and
attributed to the uncertainty in the network fabrication. Although
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this is an important reason, it will be shown later that neglecting
the capillary valve effect in the pore network model can be
another reason.

A pore network model with the capillary valve effect is devel-
oped in this paper for simulations of the capillary force dominated
two-phase flows in porous media. Experiments for gas–liquid two-
phase flows in microfluidic networks are performed. The numer-
ical results agree well with the experimental data if the capillary
valve effect is considered in the model. If this effect is not con-
sidered, the agreement is not so good.

The paper is organized as follows: In Section 2, the experiments
for the gas–liquid two-phase flow in microfluidic networks are
depicted. The pore network model with the capillary valve effect is
developed in Section 3. In Section 4, the numerical results are
compared with the experimental observations. The conclusions
are drawn in Section 5.
2. Experiments with microfluidic networks

The gas–liquid two-phase flow experiments are conducted
with the microfluidic networks supplied by CapitalBio Corporation
(China). The transparent networks are fabricated using PDMS and
have a semi-two-dimensional structure. The networks consist of
square pores with the side length of l¼1 mm and of rectangular
throats with a randomly distributed width w. The ducts, i.e., pores
and throats, have the same depth of h¼0.1 mm. The distance
between the centers of two neighboring pores is a¼2 mm.

Two types of networks with different throat width distribu-
tions are used. In the network of type A, the throat widths are
uniformly distributed in the range [0.14–0.94] mm. The minimal
difference between two throat widths is 0.02 mm so as to relieve
the effects of the fabrication uncertainty (70.01 mm). In the
network of type B, the throat widths are 0.86, 0.88, 0.90, or
0.92 mm. Both networks have a size of 4�4 throats. Fig. 1 shows
the structures of these two networks, where the numbers are the
throat widths (the unit is mm). The middle pore at one side of the
network is connected to an inlet tube of 0.5 mmwide and of 8 mm
long, through which the invading fluid is injected. Opposite to this
inlet side is the outlet open to the environment. The other two
sides are impermeable.

The network is initially filled with the displaced fluid (air). The
invading fluid is then injected into the network until the break-
through moment. In the drainage experiment, the invading fluid is
Fig. 1. Structures of the networks used in this work.
water with an advancing contact angle of about 67°. In the imbi-
bition experiment, the invading fluid is the mixture of 20% v/v
water and 80% v/v alcohol with an advancing contact angle of
about 103°. The contact angle is measured in the displaced fluid.
Dye agents are not used in the invading fluids to avoid wettability
changes and duct blockages. The network is placed horizontally on
a base to eliminate the effects due to gravitational forces.

The invading fluid is injected into the network by using a syr-
inge pump (Harvard Apparatus, 11 Plus, USA). The flow rate is
controlled to 0.1 μl/min so as to achieve a low capillary number
(Ca�10�8). The capillary number is defined as Ca¼μv/σ, where σ
is the surface tension, and μ and v are the viscosity and velocity of
the invading fluid, respectively. The movement of the invading
fluid is recorded by a camera equipped with a macro lens (Nikon
D810, Japan).
3. Pore network model

During the immiscible two-phase flow in a network, the
invading and displaced fluids are separated by menisci inside
ducts, across which a pressure difference is established:

ΔP ¼ Pinvading f luid�Pdisplaced f luid ¼ σ
1
rw

þ 1
rh

� �
ð1Þ

where rw and rh are radii of curvatures of menisci in the width and
height directions, respectively. These two curvature radii are vec-
tor quantities and have direction as well as magnitude. A curvature
radius is taken as positive if the center is at the side of the invading
fluid, otherwise negative. The network ducts have the same height
but various widths. Hence, rw varies from ducts to ducts; rh
remains constant and equals to rh¼h/2cos θa, where θa is the
advancing contact angle. For this reason, only the variation of rw is
investigated in the following analysis.

For a meniscus in a duct of width w, its curvature radius is
rw¼w/2cos θ, where θ is the contact angle taken in the displaced
fluid. The pressure difference across the meniscus increases with
decreasing θ, Eq. (1). The three-phase contact line, where the
invading fluid, displaced fluid, and solid meet, cannot move for-
ward if θ4θa. Hence, to advance the meniscus, the pressure dif-
ference across it must exceed that at θ¼θa. This critical value is
called the threshold pressure (Lenormand et al., 1983). The
The numbers are throat widths (the unit is mm).



Fig. 2. Schematic and experimental observation of bursting invasion into a pore: (a) advancement of the three-phase contact line in the throat; (b–d) evolution of the
meniscus when the three-phase contact line is pinned at the throat-pore interface; (e) advancement of the three-phase contact line along the pore wall.
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threshold pressure of a throat with width w and height h is:

Pt ¼ 2 cos θaσ
1
w
þ1
h

� �
ð2Þ

Fig. 2 shows how the invading fluid enters a pore from one
throat. This type of pore invasion is called bursting invasion. The
contact angle jumps to θ¼θaþ90° when the three-phase contact
line reaches the throat-pore interface, Fig. 2(a) and (b). The three-
phase contact line then remains pinned. The curvature radius is
rw¼w/2sin θ, where w is the throat width. The contact angle
reduces from θ¼θaþ90° to θa as the meniscus grows, Fig. 2(b)–
(d). During this period, the pressure difference across the meniscus



Fig. 3. Schematic and experimental observation of merging invasion into a pore: (a) before touching of two menisci; (b) at the moment of touching; (c) after touching of two
menisci.
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is largest at θ¼max(90°, θa), i.e., 90° in drainage and θa (490°) in
imbibition. The three-phase contact line advances along the pore
wall as θ reaches θa, Fig. 2(d) and (e). The curvature radius then
increases, resulting in a lower pressure difference across the
meniscus, Eq. (1). Hence, the threshold pressure for bursting
invasion into a pore is:

Pt ¼ 2σ
sin ½maxð90 3 ;θaÞ�

w
þ cos θa

h

� �
ð3Þ

where w and h are the throat width and height, respectively.
Owing to the sudden geometrical expansion at the throat-pore

interfaces, the threshold pressure to invade a throat is smaller than
that to burst from it into a pore, Eqs. (2) and (3). This is called the
capillary valve effect. During the two-phase flow in a network, a
meniscus will stop moving when it reaches the entrance of a pore.
The pressure of the invading fluid then increases, which can cause
the advancement of other menisci. As a result, two or more throats
adjacent to a pore can be invaded before invasion into this pore.

Fig. 3 shows how the invading fluid enters a pore from two
throats. Throats A and B are invaded, and wA4wB. Menisci A and B
have the same curvature radii since the pressure differences across
them are identical when two-phase invasion is dominated by
capillary forces. This also implies θA4θB. The menisci touch each
other at θA4max(90°, θa). The curvature radii are rw¼wA/2sin θΑ
before touching, Fig. 3(a) and (b). After touching, a new meniscus
forms, leading to a larger rw, Fig. 3(c). The pressure difference
across the menisci is largest at the moment of touching, Eq. (1).
This type of pore invasion is called merging invasion. The
threshold pressure is:

Pt ¼ σ
1
R
þ2 cos θa

h

� �
ð4Þ

where R is the curvature radius at the moment of menisci
touching.

As elucidated in Fig. 3(b), the value of R can be determined by
the relationship AB2¼OA2þOB2:

ð2RÞ2 ¼ l
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� wA

2

� �2
r" #2

þ l
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� wB

2

� �2
r" #2

ð5Þ
At the moment of menisci touching, θA is larger than the value
of max(90°, θa), which implies:

R4
wA

2 sin ½maxð901;θaÞ�
ð6Þ

The menisci cannot touch at θAZ145° since pores are square
and larger than their adjacent throats. This means:

RowAffiffiffi
2

p ð7Þ

The value of R can be gained from Eqs. (5)–(7). If no solution is
found, merging invasion shown in Fig. 3 will not occur; and the
pore will be invaded by bursting invasion from throat A.

If the menisci shown in Fig. 3 touched at θArmax(90°, θa), the
pressure difference across the menisci would be largest at
θA¼max(90°, θa). This type of pore invasion is still called bursting
invasion because the threshold pressure is equal to that for
bursting invasion from throat A. The menisci shown in Fig. 3 are
neighboring to each other. If they were opposite, merging invasion
would not occur. Three or more menisci attached to a pore cannot
touch simultaneously since throats have various sizes. As a result,
only merging invasion by two neighboring menisci is considered.

The following procedure is used to check whether a pore is
invaded by bursting or merging invasion. First, the invaded throats
adjacent to the pore are determined, and the meniscus attached to
the largest one is called meniscus A. The menisci neighboring to
meniscus A are then scanned. If there is no such meniscus, the
pore will be invading by bursting invasion. If there are menisci
neighboring to meniscus A, the one attached to the throat of the
largest size is identified and called meniscus B. Possibility of
merging invasion by menisci A and B is then checked by Eqs. (5)–
(7). Merging invasion will happen if a solution is found; otherwise
bursting invasion will occur.

The following algorithm is applied to the capillary force
dominated two-phase flow in a network. At each step, only the
available duct with the lowest threshold pressure is invaded. A
duct is trapped if it is filled with the displaced fluid, and there is no
flow path between it and the outlet. A duct is available if it is filled
with displaced fluid, not trapped, and adjacent to an invaded duct.
The threshold pressure of an available duct is determined by
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Eqs. (2)–(7). If the capillary valve effect is neglected, the threshold
pressures of all available ducts will be computed by Eq. (2) with w
being the duct width.
4. Results and discussion

Figs. 4–6 compare the numerical and experimental results for
the two-phase flows in the networks of types A and B. The
numerical results are obtained from the pore network model with
the capillary valve effect. In the images for the numerical results,
the invaded throats are red; the pores invaded by bursting and
Fig. 4. Comparison between drainage in the network of type A obtained from the expe
breakthrough moment. In the images for the numerical results, the invaded throats a
respectively; the ducts filled with the displaced fluid are white; and the solid is gray. In th
is white; the solid is gray. (For interpretation of the references to color in this figure le
merging invasion are blue and yellow, respectively; the ducts full
of the displaced fluid are white; and the solid is gray. In the images
for the experimental results, the invading fluid is black; the dis-
placed fluid is white; and the solid is gray. The raw experimental
images are presented in the Supplementary material.

As can be seen from Figs. 4–6, the numerical results agree well
with the experimental observations. This validates the effective-
ness of the pore network model developed in the present work.

For two-phase flows in the network of type A, pore invasion is
dominated by bursting invasion, Figs. 4 and 5. Drainage and
imbibition are similar. The only difference is that more throats are
invaded in imbibition. In this case, throats have a lower threshold
riments and the pore network model with the capillary valve effect. Stage VI is the
re red; the pores invaded by bursting and merging invasion are blue and yellow,
e images for the experimental results, the invading fluid is black; the displaced fluid
gend, the reader is referred to the web version of this article.)



Fig. 5. Comparison between imbibition in the network of type A obtained from the experiments and the pore network model with the capillary valve effect. Stage VI is the
breakthrough moment. The use of colors is same to that in Fig. 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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pressure than pores; and all available throats are invaded before
next pore invasion. In drainage, an available throat is invaded
before next pore invasion if it is greater than the largest invaded
throat connected to an available pore.

Both drainage and imbibition show the following invasion
characteristics. Before pore invasion, the invading fluid has occu-
pied the largest throat between an invaded pore and a non-
trapped pore full of the displaced fluid; the available pore con-
nected to this largest invaded throat will be invaded in next pore
invasion. As a result, drainage and imbibition in the network of
type A are similar and exhibit a capillary fingering pattern,
Figs. 4 and 5.
For drainage in the network of type B, pore invasion is domi-
nated by merging invasion, Fig. 6. In this case, the ducts have
similar sizes; and the invasion processes are affected significantly
by the fabrication uncertainty. Differences in the invasion order
are found between the simulation and the experiment, e.g., inva-
sion into the left down pore. The experimental results are expec-
ted to be the same as the numerical results if the fabrication
uncertainty is reduced. For this reason, we focus on the numerical
results in the following analysis.

The network is divided into four layers from the inlet to the
outlet. Each layer has five pores and four throats. The throats in the
first layer are larger than others, Fig. 1. Hence this layer is invaded



Fig. 6. Comparison between drainage in the network of type B obtained from the experiments and the pore network model with the capillary valve effect. Stage VI is the
breakthrough moment. The use of colors is same to that in Fig. 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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first. This resembles invasion from an open face of the network. All
throats between the first and second layers are invaded before
invasion into a pore in the second layer, Fig. 6(I). This is because
threshold pressures for bursting invasion into pores are larger than
those of throats.

A pore in the network of type B will be invaded by merging
invasion if two neighboring menisci are attached to this pore.
Merging invasion has a lower threshold pressure than bursting
invasion. Hence, after the invading fluid occupies a pore in the
second layer and its connected throats, the available pores in the
second layer adjacent to this invaded pore are invaded in the next
step, Fig. 6(II) and (III). Pore invasion in the third layer will not
happen unless all the pores in the second layer are invaded, Fig. 6
(IV). Invasion in the left network layers follows a similar way, Fig. 6
(V) and (VI). Thus, a stable invasion pattern is observed.

Lenormand (1990) has revealed that slow drainage in a porous
medium is a capillary fingering pattern. This study, however,
shows that the stable pattern is also possible, Fig. 6.

Fig. 7 shows the phase distributions at the breakthrough
moment predicted by the pore network model without the
capillary valve effect. The numerical and experimental results are
similar for drainage in the network of type A, Figs. 4(VI) and 7(a).



Fig. 7. Phase distributions at the breakthrough moment obtained from the pore network model without the capillary valve effect: (a) drainage in the network type A;
(b) imbibition in the network of type A; (c) drainage in the network of type B. The invaded throats and pores are red and blue, respectively; the ducts filled with the displaced
fluid are white; and the solid is gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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They are quite different for imbibition in the network of type A,
Figs. 5(VI) and 7(b). The huge difference is also observed for
drainage in the network of type B, Figs. 5(VI) and 7(c).
5. Conclusions

The capillary valve effect is studied for the capillary forced
dominated immiscible two-phase flows in the networks composed
of regular pores and throats. Two types of networks are used. In
the network of type A, the throat widths are distributed from 0.14
to 0.94 mm. In the network of type B, the throat widths are dis-
tributed from 0.86 to 0.92 mm. All the pores have the same side
length of 1 mm. Gas–liquid two-phase flows in these two net-
works are visualized experimentally. Two types of pore invasion
are revealed. One is bursting invasion, where the invading fluid
enters a pore from one throat. The other is merging invasion,
where a pore is invaded by the invading fluid from two throats.

A pore network model is developed to include the capillary
valve effect. The numerical results agree well with the experi-
mental data. For drainage and imbibition in the network of type A,
pore invasion is dominated by bursting invasion, and the flow
pattern is capillary fingering. Drainage and imbibition in this
network are similar; the only difference is that more throats are
invaded in imbibition. For drainage in the network of type B, pore
invasion is dominated by merging invasion, and the flow pattern is
stable.

The results obtained from the pore network model without the
capillary effect are also compared with the experimental data. The
numerical and experimental results are similar for drainage in the
network of type A. But they are quite different for imbibition in the
network of type A as well as for drainage in the network of type B.
The results presented in this work show clearly that the capillary
valve effect needs to be considered to understand in detail the
two-phase flows in porous media.
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