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Modelling of the Wall Effect in Packed Bed Adsorption 
 

By Witold Kwapinski*, Markus Winterberg, Evangelos Tsotsas, and Dieter Mewes 

 
 
A model developed for catalytic packed bed reactors and consistently accounting for the 

influence of the tube wall on porosity, flow and transport phenomena is used in order to simulate 
the operation of packed bed adsorbers. By comparison of simulation results with reduced versions 
of the model the influence of the wall on adsorber performance is worked out and found to be major 
at low ratios between tube and particle diameter. The interaction between maldistribution, thermal 
effects and intraparticle resistances in such adsorber tubes is discussed. 

 
 

1 Introduction 
 

Separation, cleaning and drying of gas mixtures by adsorption in packed beds find broad 
application in the process, chemical and environmental industry. Due to intensive research, the 
physical fundamentals of adsorption are relatively well understood, and the prediction of 
breakthrough in packed beds with a large tube-to-particle diameter ratio, D/dp, is possible with 
sufficient accuracy (see, e.g., [1,2]). 

The situation is more difficult with relatively slim tubes, since at small D/dp ratio the tube wall 
has a considerable influence on porosity, fluid flow, heat transfer and mass transfer in the bed. This 
wall influence was investigated for isothermal [3-8], in some cases also for non-isothermal 
adsorption [9,10]. However, the respective models often include simplifying assumptions (specific 
types of adsorption equilibrium, constant pattern behavior, lumped overall coefficients for fluid-to-
particle mass transfer). Many authors use porosity profiles ψ(r) with an only weak rise of porosity 
to the wall. In the computation of the flow profile u0(r) nearly all authors work with the fluid 
viscosity instead of an increased effective viscosity. Giese et al. [11,12] have shown that the 
conditions of flow through the bed are not realistically described in this way. Still more unrealistic 
or at least more uncertain are calculations of the radial dispersion coefficient Dr(r) and the radial 
effective thermal conductivity Λr(r). These functions are calculated on the basis of correlations 
derived with plug flow models, by typically replacing the average by the local flow velocity. Only 
Lingg [9] tries to express the radial effective thermal conductivity as a function of the radial 
coordinate, using, however, relationships that are, from the present point of view, not up-to-date.  

Therefore, the main objective of the present work is to revisit by simulations the influence of tube 
wall on packed bed adsorption. To this purpose, recently developed models are used, which are 
proven by extensive validation to very reliably describe heat and mass transfer, and the operation of 
wall-cooled catalytic packed bed reactors [13-18]. Such models are based on a consistent 
description of the radial profiles of porosity, flow, dispersion and conductivity in the bed. First, the 
models are presented, cast in a form that allows for the treatment of packed bed adsorption. 
Reduced model versions are also derived, for the sake of comparison and reference. Second, the 
numerical solution and its validation are discussed. Finally, selected simulation results for 
isothermal and non-isothermal adsorption are presented and analyzed. 

The investigated parametric space is oriented to the adsorption of water vapor from air on 4A 
zeolite. Separate measurements on single particles have provided adsorption kinetics and equilibria 
for this material system [19]. Respective data are taken over from [19], along with a simple model 
for fluid-to-particle mass transfer, and will not be repeated here. On the other hand, packed bed 
dimensions are oriented to experimental investigations, which are presently in progress and 
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implement near infra-red tomography for the temporal and spatial resolution of breakthrough at the 
outlet of the bed [20]. Respective comparisons will be published at due time. 

 
 

2 Maldistribution of Porosity and Flow 
 

Based on the work by Giese [11], the radial porosity profile in the packed tube is calculated by 
the monotonic exponential expression 
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with R = D/2. Equation (1) is valid for particles that are nearly – but not perfectly – monodispersed 
and nearly – but not perfectly – spherical in shape. Its integration over the radial coordinate, r, leads 
to the average porosity, ψ , of beds confined in cylindrical tubes. In the present work, the average 
porosity of a bed with D/dp = 11 has been measured to ψ  = 0.405, and the porosity at infinite 
distance from the wall has been derived to ∞ψ  = 0.365. It should be stressed that ψ  changes with 
D/dp, while  does not. ∞ψ

Higher porosity in the vicinity of the walls leads to higher velocities in this region of the tube that 
extends over about half a particle diameter from the wall. The lower the tube-to-particle diameter 
ratio, the more pronounced the deviation from uniform flow (plug flow). The increase of flow 
velocity in the vicinity of the wall is accompanied, due to continuity, by a decrease in the middle of 
the bed. The velocity profile is calculated by means of the extended Brinkman equation  
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the effective viscosity after Giese 
 

( 0
3

f

eff Re105.3exp0.2 −⋅=
η
η )  ,        (5) 

 
the Reynolds number 
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and the boundary conditions 
 
 z = 0 then p = pin ,  



 r = 0 then 0
r

u 0 =
∂

∂ , 

 r = R then u0 = 0 . 
 
The first two terms on the right-hand side of eq.(2) account for head loss caused by the particles and 
are widely known as D’Arcy and quadratic or Ergun term, respectively. The third term describes the 
head loss resulting from viscous friction in the vicinity of the wall and combines with the no slip 
boundary condition (u0 = 0). Since porosity and velocity profiles obtained from the above equations 
have often been presented in literature [11-18], we refrain here from respective plots. 

 
 

3 Packed Bed Models 
 

The transcription of the packed bed model after [13], see also [14-18], for adsorption is, 
concerning mass transfer 
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The change of mass of adsorbate with time is accounted for in the last term on the right-hand side of 
eq.(7) according to the model from [19]. In this two-layers model, gas-side and particle-side mass 
transfer are described by separate coefficients, βf resp. βp, without calculating the intraparticle 
concentration field. The previously discussed radial profiles of porosity and flow velocity are 
implemented in eq.(7). Axial dispersion coefficients are calculated locally as 
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The variation of the radial dispersion coefficient with the radial coordinate is expressed by the 
relationship 
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with the function 
 

⎪
⎩

⎪
⎨

⎧

≤−<

≤−≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=−

RrRdKfor1

dKrR0for
dK
rR

)rR(f

p2

p2

2

p2
 ,    (11) 

which includes the slope parameter 
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and the damping parameter 
 

K2 = 0.44 .           (13) 
 
The slope parameter describes how dispersion increases with increasing intensity of cross-mixing at 
higher molecular Péclet numbers, Pe0. The function f(R-r) and the damping parameter describe the 
inhibition of cross-mixing in the vicinity of the wall. 

The analogous equation for heat transfer is 
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with the effective axial thermal conductivity 
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the molecular Péclet number for heat transfer 
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and the effective radial thermal conductivity 
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The damping function f(R-r) remains the same as for mass transfer (eq.(11)), while the slope 
parameter and the damping parameter are slightly modified to, respectively, 
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The heat release by adsorption, see [19] for ΔHad, is derived in the last term on the right-hand 

side of eq.(14) from the change of solids load with time. This very term couples the energy with the 
mass balance, so that both have to be solved simultaneously in order to account for thermal effects. 
Heat transfer resistances to or in the particles are neglected. The terms δbed(r) and λbed(r) in eqs (8), 
(10), (15) and (17) describe the isotropic effective diffusivity and thermal conductivity of the bed 
without fluid flow. Boundary and initial conditions for eqs (7) and (14) are recapitulated in Table 1. 

On the basis of the above general model various reductions are possible by neglecting thermal 
effects, the radial coordinate or gas-to-particle and intraparticle mass transfer resistances. From such 
reduced versions the following have been considered in more detail in the present work: 



1) plug-flow model (1-D) with local equilibrium between the gas and the solids,  
2) plug-flow model (1-D) with mass transfer resistance to the solids,  
3) 2-D maldistribution model with local equilibrium,  
4) 2-D maldistribution model with mass transfer resistance to the solids.  
In our terminology “plug flow” means that every influence of the radial coordinate is neglected, 

including the influence of the wall on porosity and flow velocity. However, axial dispersion, as 
expressed by the dispersion coefficient Dax, is accounted for, so that the equation 

 

[ ]
f

p
02

2

ax t
X1

z
Yu

z
YD

t
Y

ρ
ρ

∂
∂

ψ−−
∂
∂

−
∂
∂

=
∂
∂

ψ       (20) 

 
applies to the isothermal plug flow models (models 1 and 2). Equation (20) is the classical, 
conventional way to model packed bed adsorbers. Local equilibrium corresponds, in terms of the 
two-layers model from [19], to the limiting case of βf → ∞ and βp → ∞. At this limit, equilibrium is 
considered to be sufficient for calculating the response of the solid phase to changes of the 
concentration in the fluid. Model 4 is our complete, highest order model, as previously outlined and 
in exact correspondence to [13-18]. Mainly this model has been evaluated for both isothermal and 
non-isothermal conditions. 

 
 

4 Numerical Solution and its Validation 
 

The partial differential equation or equations of the various models have been solved by the 
method of lines. The numerical calculations were conducted for different mesh densities, and the 
results accepted when the change of calculated gas moisture content values was lower than 0.05 % 
of the maximal difference of gas moisture content appearing in the packed bed. When the error was 
bigger, the mesh was made denser. Since the width of the concentration front is, in many cases, not 
much smaller than the length of the bed, equidistant meshes have been used in the axial direction. In 
the maldistribution models (models 3 and 4 in previous section) meshes that were denser near the 
wall than in the center of the tube have been applied. 

To check the numerical procedure, respective results have been compared with available 
analytical solutions. One such solution is attributed to Anzelius [1] and refers to model 2 after the 
classification of section 3, additionally reduced by neglecting axial dispersion (Dax = 0). 
Furthermore, it is assumed that the sorption equilibrium is throughout linear (“Henry’s law”), and 
that the bed is long. The mass transfer resistance is attributed to the fluid phase. Then, axial profiles 
can be derived to 
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In eq.(21) the concentration of adsorbate in the gas phase, C, is used instead of the content, Y, 
assuming an initial value of C0 = 0. In eqs (22), (23) the equilibrium constant (slope of the isotherm) 
is denoted by K, while u is the interstitial flow velocity (u = u0/ψ). Bars are not used to denote 
averages (compare with eq.(20)), for the sake of simplicity. 

The numerical results are in very good agreement with analytical solutions for different mass 
transfer coefficients, as Fig. 1 shows. Only for the smallest value of the mass transfer coefficient, βf, 
a certain deviation is conceivable. The reason lies not in the numerical, but in the analytical 
solution, which is valid only for long beds – long in dimensionless terms, as expressed by the value 
of the parameter ξ. The fact that ξ becomes too small with decreasing βf can be remediated by 
increasing z. Excellent agreement can be obtained at any mass transfer coefficient, provided that the 
adsorber is long enough.  

If the mass transfer to the particles is neglected and, instead, axial dispersion considered, model 1 
from section 3 is obtained. Assuming, again, linear equilibrium and long times of retention the so-
called Levenspiel and Bischoff solution is derived (see [1]) to  
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While eqs (24) and (25) are explicit in terms of breakthrough, they can also be used to calculate 
axial concentration profiles, as depicted in Fig. 2. Small deviations in the comparison with 
numerical results can, once more, be removed by giving to the front the opportunity to move further 
downstream [21]. Asymptotically, the so-called primary transfer function is obtained, and the 
influence of boundary conditions vanishes completely. This influence is still conceivable in Fig. 2, 
where numerical results for both C = Cin (or Y = Yin, “zero BC”) and the more complicated 
boundary condition after Danckwerts at z = 0 (see Table 1) are given. Since the influence is small, 
the simpler, zero boundary condition will be used in calculations with the maldistribution models.  
 
5 Wall effect in isothermal adsorption 

 
From many conducted simulations only a few selected results will be presented and discussed 

here. All respective calculations were made for adsorption of water vapour on 4A zeolite particles 
[19] packed in a cylindrical tube with D = 50 mm. Gas properties are determined at 25 °C. 

Figure 3 shows exemplarily calculated axial profiles of average gas moisture content along the 
adsorber for all isothermal models stated in section 3 and recapitulated in the legend of the figure. It 
should be stressed that Y  takes locally different flow velocities into consideration, that means it is a 
mixing cup average, turned dimensionless by the initial and inlet gas moisture contents, Y0 and Yin, 
respectively. The curves have been gathered together in Fig. 3 by defining the abscissa as z-zR, 
wherein zR is the individual midpoint of every curve, corresponding to an ordinate value of 0.5. 
Comparison of the plug flow with the maldistribution models (i.e. comparison of model 1 with 3, or 
model 2 with 4) shows that by consideration of the wall effect the curves become flatter and spread 
out. Consequently, what we macroscopically interpret as “axial dispersion” is – to a certain part – 
not due to Dax, mass transfer resistances or to equilibrium, but caused by the radial distributions of 
porosity, flow velocity and effective transport coefficients in the packed bed. The lower the ratio 
D/dp, the larger is this contribution to the second moment of the profiles, as Fig. 4 points out. 



Obviously, the usual assumption of uniform flow (plug flow) would cause major mistakes at 
diameter ratios smaller than about 20. This value copes well with existing experience from packed 
bed reactors. However, in both cases of adsorption and catalysis it depends on a multitude of further 
operating parameters and material properties, so that a clear limit for the applicability of plug flow 
approaches can not be declared.  

The same data as in Fig. 3 are plotted in Fig. 5a, though this time versus the actual axial 
coordinate, z. The comparison reveals that, independently of whether mass transfer resistances are 
considered or not, the plug flow models lead to profiles with the same midpoint, i.e. they have the 
same average retention time. This is not true for their comparison with the maldistribution models. 
Consequently, not only the second moment, but also the first moment of the curves is influenced, to 
a certain extent, by the disturbance of the bed caused by the rigid wall.  

Figure 5a (as all the others except Fig. 5b) has been calculated with the isotherms for adsorption 
of water vapor on zeolite after [19] in their still convex part. Such Langmuir-like (“type II”) 
equilibria are called favorable, because they inhibit the increase of the second moment of 
concentration profiles or breakthrough curves and, in this sense, compete with the already 
mentioned dispersive mechanisms. The wall effect must be counted to such dispersive mechanisms, 
as already discussed. Indeed, constant pattern behavior arises in case of Fig. 5a for all models. 
Consequently, the profiles do not change any more after a certain inlet transient, but move 
translatorially through the bed. Without dispersive mechanisms, favorable equilibrium would 
transform any inlet signal between two distinct concentration levels to a shock wave. Such 
simulations have also been conducted and are, numerically, extremely demanding, because solution 
errors increase with increasing steepness of the concentration front. In the calculations of Fig. 5b a 
throughout linear equilibrium has been assumed, so that the observable dispersion is much larger 
than in Fig. 5a. Constant pattern behavior is not obtained in this case. 

Local gas moisture content profiles calculated after the isothermal version of the maldistribution 
model with mass transfer resistance (model 4 from section 3) at the center of the tube as well as at a 
position near the wall are shown in Fig. 6. We see that the gas moisture content profiles in the 
vicinity of the wall have moved further than those in the bed center, due to near-wall flow 
channeling. The lag between center and near-wall profiles increases with decreasing diameter ratio, 
D/dp. For many practical applications one would have to design rather on the basis of wall gas 
moisture content profiles and breakthrough curves in order to be on the safe side, with a 
considerably lower adsorption capacity and operation time before switching to desorption. 
Reduction of D/dp increases the second moment of the gas moisture content profiles at both the 
center and the margin of the tube. 

In spite of their importance, maldistribution effects are in case of packed bed adsorption only one 
component of a complex behavior. Another important component is, as already indicated by Fig. 3, 
the mass transfer resistance between the mobile and the stationary phase. For the investigated 
material system this mass transfer resistance is located primarily in the particles [19]. The lower the 
particle mass transfer coefficient, βp, the flatter and more spread out is the concentration curve.  

 
 

6 Combined wall and thermal effects in non-isothermal adsorption 
 

In many cases, especially at highly loaded feeds, the adsorption process in the fixed bed is 
strongly exothermic. Not only concentration but also temperature profiles will then migrate through 
the porous medium, and have to be modeled by consideration of the energy balance, as described in 
section 3. Selected non-isothermal calculations conducted with the parameters of Table 2 will be 
presented in the following. As Table 2 shows, the wall temperature has been assumed to be equal to 
the gas inlet temperature in these calculations. The temperature dependence of adsorption 
equilibrium and of intraparticle mass transfer [19] is accounted for. 

Figure 7 shows breakthrough curves in the core and at the wall of the adsorber calculated at 
different D/dp ratios by means of the non-isothermal model with mass transfer resistance. 



Calculations were also made for the isothermal mode (Fig. 8), with otherwise the same parameters. 
The comparison reveals completely different positions and slopes of the breakthrough curves. In 
case of isothermal operation, near-wall breakthrough is faster than the breakthrough in the center of 
the adsorber at any value of D/dp. In the non-isothermal case, the same is true only for the lower 
value of D/dp. At higher values of the diameter ratio there can be a part of the adsorber where the 
concentration is higher in the core than in the near-wall region.  

The same effect is clearly visible in Fig. 9, where the complete concentration field in the adsorber 
is depicted at a specified time. The flow maldistribution in the vicinity of the wall causes higher 
concentration and loading in this region than in the core for the ratio D/dp = 11. However, for a 
higher ratio of D/dp = 25 the moisture content of the gas can be larger in the core region than near 
the wall. In this case, the effect of maldistribution does not dominate, but is overlapped by the 
reduction of adsorption capacity due to the increase of temperature in the core of the bed. 
Obviously, maldistribution and the non-isothermal character of the process interact in a complex 
way. Characteristic of the thermal influence is also the fact that adsorption is completed after 
10000 s according to Fig. 8, while it is still going on according to Fig. 7. 

The temperature field in the adsorber is exemplified in Fig. 10 for the diameter ratio D/dp = 11. 
The temperature decreases in the radial direction because of cooling of the wall at the temperature 
of inlet gases. In axial direction, temperature grows at the entrance region of the adsorber till a 
maximum is reached (a hot spot, as with exothermic catalytic reactions), and falls then because of 
decreasing concentration of moisture in the gas and wall cooling. The temperature profiles depend 
only moderately on D/dp, provided that this ratio is varied by changing the particle, and not the tube 
diameter. They become flatter and spread out with increasing time. 

 
 

7 Conclusions 
 

A two-dimensional model for heat and mass transfer in packed beds has been used to simulate 
adsorption under severe operating conditions of high load, and high wall and thermal effects. The 
model does not only consider the increase of porosity and flow velocity near the tube wall, but also 
expresses the effective transport coefficients as functions of the radial coordinate. It has been 
extensively validated for the case of pure transport phenomena, or wall-cooled, catalytic packed bed 
reactors, and helps to avoid oversimplifying assumptions and inconsistencies of previous modelling 
approaches. 

The investigated parametric space is oriented to the adsorption of water vapour from air on 4A 
zeolite. Separate measurements of adsorption kinetics and equilibria on single particles are available 
for this material system and have been used. The accuracy of numerical calculation has been 
documented by comparison with existing analytical solutions. Reduced models have been solved 
for the purpose of comparison. The simulation results and their analysis reveal that the described 
two-dimensional modelling is mandatory in order to reliably represent the operation of packed bed 
adsorbers with tube-to-particle diameter ratios of less than about twenty. Such adsorbers can not be 
treated with conventional, one-dimensional approaches. Wall (channelling) effects, thermal effects 
and the influence of intraparticle kinetics combine in the investigated region of operating conditions 
in an intimate and complex way. At present, a novel near infra-red tomographic technique is applied 
in order to measure breakthrough curves with the spatial and time resolution necessary for detailed 
comparison with the results of the simulations. 
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Symbols used 
 

c [J/(kg·K)] heat capacity 
C [mol/m3] concentration 
d [m] diameter 
D [m] diameter of the adsorber 
D [m2/s] effective mass dispersion coefficient 
L [m] bed length 
ΔH [J/kg] isosteric heat 
Κ [-] slope of isotherm 
p [Pa] pressure 
r [m] radial coordinate 
R [m] radius 
t [s] time 
T [K], [°C] temperature 
u [m/s] interstitial velocity 
u0 [m/s] superficial velocity 
uc [m/s] superficial core velocity 
X [kg/kg dry] solids moisture content 
Y [kg/kg dry] gas moisture content 
z [m] axial coordinate 
   
   
Greek Symbols   
   
β [m/s] mass transfer coefficient 
δ [m2/s] diffusion coefficient 
η [Pa·s] dynamic viscosity 
λ [W/(m·K)] thermal conductivity 
Λ [W/(m·K)] effective thermal conductivity 
ν [m2/s] kinematic viscosity 
ρ [kg/m³] density 
ϕ [-] relative humidity 
ψ [-] porosity 
   
   
Subscripts   
   
ad  adsorption, adsorbate 
ax  axial 
bed  bed 
c  core 
eff  effective 
f  fluid 
in  gas inlet 
p  particle 
r  radial 
R  retention, midpoint of front 
w  wall 
0  initial, reference, superficial 
–  average 
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∞  at infinite distance from the wall 
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Table 1. Boundary and initial conditions for models. 
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Table 2. Conditions for calculations with the non-isothermal model; (not mentioned 
parameters were the same as in the previous, isothermal calculations). 
 

ū0 [m/s] 0.034 

ϕ0 [-] 0.252 

ϕin [-] 0.523 

Tin [K] 314 

Tw [K] 314 

λp [W/(m·K)] 0.1 
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Figure 1. Comparison of numerical results with asymptotic analytical solutions accounting 
for gas-particle mass transfer. Calculations were made for the following conditions: 
u0 = 0.1 m/s, ψ = 0.4 and K = 4700. 
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Figure 2. Comparison of asymptotic analytical solutions accounting for axial dispersion with 
numerical results with different boundary conditions. Calculations were made for the same 
parameters as in Fig. 1. 
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Figure 3. Comparison of axial profiles of average gas moisture content for (1) plug flow 
model with local equilibrium, (2) plug-flow model with mass transfer resistance, (3) 
maldistribution model with local equilibrium, and (4) maldistribution model with mass 
transfer resistance; (ϕ0 = 0.05, ϕin = 0.60, t = 3·104 s). 
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Figure 4. Comparison of axial profiles of average gas moisture content for the 
maldistribution model with mass transfer resistance at different tube-to-particle diameter 
ratios. Calculations were made for otherwise the same conditions as in Fig. 3. 
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Figure 5. Comparison of axial profiles of average gas moisture content calculated after the 
various models in case of favorable (a) and throughout linear equilibrium (b); Calculations 
were made for otherwise the same conditions as in Fig. 3. 
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Figure 6. Wall and core profiles of gas moisture content for the isothermal maldistribution 
model with mass transfer resistance at different tube-to-particle diameter ratios. Calculations 
were made for the same conditions as in Fig. 3. 

 



 

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

t , s  

 core  (r  = 0)
 wall-region (r = 0.98R)

11    25     D/dp

Y-Y
Y -Y

0

in 0

non-isothermal model
z = 0.2 m

 
 

Figure 7. Comparison of wall and core breakthrough curves for different tube-to-particle 
diameter ratios according to the non-isothermal model. 
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Figure 8. Wall and core breakthrough according to the isothermal version of the 
maldistribution model.  
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Figure 9. Calculations of gas moisture content field in the adsorber for the non-isothermal 
maldistribution model with mass transfer resistance, for D/dp = 11 and D/dp = 25, at 
t = 5000 s. 
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Figure 10. Temperature field in the adsorber according to the non-isothermal maldistribution 
model with mass transfer resistance for t = 5000 s and D/dp = 11. 
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