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Double check in discrete: Progress in 

computers/algorithms, but we would 

still need continuous models 

to organize the numerical results

Discrete vs. Continuous models

Double check in continuous:

• How good/bad are 

existing continuous 

models (CM)?

• Can continuous models 

be made better by 

parameter estimation 

from discrete models?

• Even the best continuous 

models would 

not be able to fully  

reflect the microscale.

Discrete Continuous

Consideration of

microscale

(structure, processes)

Computational

efficiency 




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• Classical drying of porous materials and particles

in air, or inert gas (convective drying):

From polymers to ceramics, from foods to electrodes

• Continuous models for this:

- Characteristic drying curve model, CDC

- Diffusion model, DM

- Reaction engineering approach, REA

- Homogenized one-equation model, HM

CM to be addressed
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Characteristic drying curve model, CDC

Surface • 1st period: surf = 1

• 2nd period: may be 

read as surf < 1

Interior Arbitrary fitting function

(        , CDC)

Claim Admits being empirical
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X : moisture content, dry-based

cr: critical, eq: sorption isotherm

First van Meel, 1958, then many authors
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Diffusion model, DM

Surface surf (S) < 1

sorption isotherm

Interior • Founded for solid

matrix diffusion

• Otherwise

arbitrary fitting

Claim Gives the impression

of theory
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g, : same as in CDC

S: local saturation

surf (S) < 1, from sorption isotherm

Many authors
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: porosity

z: space coordinate, can be 3D

D(S): diffusion coefficient that may

depend on saturation (moisture content)
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Reaction engineering approach, REA

Surface  (X) < 1

from 

Interior LREA: None

SREA:  (X) < 1

from

Claim Tries to look like theory,

but unclear relation

to sorption isotherm,

activated diffusion etc.

( )( )*v
v g v v,
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m X p p

RT


=   −

: activation energy for moisture

release, fitted material „fingerprint“

Lumped REA (LREA): for

surface with global X

Spatial REA (SREA): Local X from

other models (DM, HM, …), 

for surface AND interior

with corresponding local X

Dong Chen et al., in many publications

( ) ( ) ( )( )X exp E X / RT = −

( )E X

( )E X

( )E X

( )E X

( )E X
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Homogenized one-equation model, HM

Surface surf (S) < 1

sorption isotherm

Interior • Founded for capillary

transport and gas  

diffusion

• (S) < 1

sorption isotherm

• No solid matrix

diffusion

Claim Results from 

mathematical

homogenization
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kabs: absolute permeability

kr: relative permeability of liquid

pc/S: capillary pressure curve

Dabs: absolute effective diffusivity of gas

Dr: relative effective diffusivity of gas

(S): sorption isotherm (local l-v-equilibrium)

De Vries, Whitaker, and others
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Summary of models

CDC DM REA HM

Surface • 1st period: 

surf = 1

• 2nd period: 

may be 

read as surf < 1

surf (S) < 1

sorption isotherm

 (X) < 1

from 

surf (S) < 1

sorption isotherm

Interior Arbitrary fitting 

function

(        , CDC)

• Founded for solid

matrix diffusion

• Otherwise

arbitrary fitting

LREA: None

SREA:  (X) < 1

from

• Founded for 

capillary transport 

and gas diffusion

• (S) < 1

sorption isotherm

• No solid matrix

diffusion

Claim Admits being 

empirical

Gives the impression

of theory

Tries to look like

theory, but, in 

fact, it is not

Results from 

mathematical

homogenization

( ) 

( )E X

( )E X



9

Assume that • Solid matrix diffusion prevails

• DM is physically founded

• Activated diffusion obeys

(depending on T, not depending on X)

• Can CDC still be successful?

• If yes, when? Conditions of equivalence to DM?

CDC vs. DM

E
D A exp

RT

 
= − 

 

Suherman et al., Drying Technol., 2008, 90
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CDC for polymer particles

Suherman et al., Drying Technol., 2008, 90

PP:

CDC

succeeds

PA6:

CDC

fails

why?
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CDC vs. DM

Suherman et al., Drying Technol., 2008, 90

Condition of equivalence CDC-DM

PP:     =24.1 kJ/mol, success

PA6:   = 54.3 kJ/mol, failure

Prediction of CDC performance 

for biomaterials:

success, medium, failure
E

E

No Material E(kJ/mol) T (K)

1 Broccoli 18.5 308-343

2 Cellulose 23.3 287-317

3 Paddy 28.4 383-443

4 Sludge 30.1 353-383

5 Pistachio nut 33.3 313-343

6 Catfish 37.5 303-323

7 Soybean 38.3 293-313

8 Potato 43.3 288-291

9 Bread 48.7 313-343

10 Coconut 81.1 323-343
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Discrete vs. Continuous models

• Consider a simple case: capillary porous material, 

completely non hygroscopic, 

no water in solid phase, 

slow isothermal drying

• Let us simulate this situation by a discrete model, 

here a pore network model (PNM)

• Let us calculate from the results

- surf(S): will it be surf(S) = 1?

- (S): will it be (S) = 1?

- Dl(S), Dv(S) and D(S) of HM: will they be easy to correlate?
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Pore network model, PNM

Network kind Regular cubic, 3D

Network size 25 x 25 x 51

Boundary layer 25 x 25 x 10

Mean throat radius 250 m

Standard deviation 25 m

Throat length 1 mm

Porosity 0.594

Temperature 20°C

Liquid Water

Gas Air

Repetitions 15

Moghaddam et al., Water Resources Res., 2017, 10422
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Scale transition

• surf(S) < 1! (S) <1! surf(S) ≠ (S)!

• surf(S) and (S) are non-equilibrium functions (or closures)

Moghaddam et al., Water Resources Res., 2017, 10422
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Scale transition

Dv, Dl and 

D = Dv + Dl

depend on the level

of global saturation



Not unique, 

strongly changing,

difficult to correlate

Moghaddam et al., Water Resources Res., 2017, 10422
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HM (continuous) vs. PNM (discrete)

It is not an easy task,

but we can improve 

the standard 

continuous model (HM) 

by parameter estimation 

from a discrete model (PNM), 

here also standard

(throat-node model, TNM)
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Throat-pore model (TPM)

Left, top: Mean values of internal NLE function () 

obtained from TPM drying simulations as function 

of local saturation (S) for different network 

saturation (Snet) intervals.

Left, down: Mean values of external NLE function 

(surf) versus the network surface saturation (Ssurf) 

obtained from PNM simulations for the TNM and 

the TPM.

Lu et al., Chem. Eng. Sci., 2020, 115723
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PNM to Two-equation CM

• Isolated liquid clusters

• Weak surface NLE

• Weak fitting of Dv(Sloc)

• Internal gas-liquid area,

Hertz-Knudsen-Schrage

evaporation, no further NLE

Ahmad et al., Chem. Eng. Sci., 2020, 115957
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Secondary capillary structures and surface wetting

CPNM: without, RPNM: with rings

Left: Ssurf, Right: Snet

RPNM: High Ssurf to low Snet

One liquid cluster (all blue)

Much faster global kinetics

NLE-like function on surface

Mahmood et al., Transport Porous Media, 2021, 351

RPNM CPNM
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Local recondensation in drying material

• Superheated steam drying:

Vapor flow & heat transfer

• Local recondensation is

not considered in CMs

• In PNM two schemes:

Condensation fully treated,

condensation partially treated

Hiep et al., Drying Technol., 2017, 1584
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Local capillary instability

• Isothermal refill       

by heterogenous 

wettability/structure

• Ganglion formation, 

bubble movement

Zhang et al., Phys. Rev. Fluids, 2020, 104305

• Complex invasion: 

capillary valve, inertia
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Structured fronts, even in freeze drying

Vorhauer-Huget et al., Processes, 2020, 1091; Thomik, et al., Drying Technol., 10.1080/07373937.2021.1966030
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Thin media, influence of structure

• No drying: Emerging 

oxygen in water          

on electrolyser anode

• Smaller scale than 

PNM: Shen-Chen LBM

• Simplified scheme           

of circles in 2D            

for three materials        

to mimick the     

influence of structure

Paliwal et al., J. Hydrogen Energy, 2021, 22747
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Influence of structure on drying: The classics

: CM, -----: Discrete model, no PNM: Bundle of capillaries 

For 200 mm thick plate

Drying kinetics depends on the variance of pore size 

distribution 

High variance: Surface stays (much) longer wet

Metzger, T., Drying Technol., 2005, 1797; Vu, Intern. J. Chem. Eng., 2019, 9043670
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Final remarks

• Drying of porous media is highly complex

• Global models can serve dryer design, but not more

• Classical CM results from brute homogenization

• Properties and closures are complex and non-unique

• Discrete models may contribute better properties and                     

closures, or even lead to new and better CMs,                                    

preserving more microscale information

• Still, many microscale structural features, processes                             

and events are localized and hard to transfer

Thanks and feel free to visit us at: www.tvt.ovgu.de 


