The main focus of the research is to study the two-phase flow in the anodic porous transport layer of electrolysers.

With innovations in the energy sector and a need for clean fuel, research is in progress to exploit the potential of hydrogen as an efficient energy source. Compared to conventional hydrogen production processes e.g. steam reforming using fossil fuels, the environmental issues still persevere. In order to obtain ‘threat-free’ hydrogen production, water electrolysers have a great potential. But, high costs of hydrogen production by water electrolysis persist because of the performance limitations credited a lot by the mass transport losses.

To study this mass transport, pore networks will first be generated (based on µ-CT data) and validated for real materials. Then, systematic pore network simulations will be conducted to track modifications of the internal structure that would be beneficial for performance. Validation experiments will be provided by a joint PhD project. Discrete simulation results that can be used for deriving effective transport parameters for continuum modelling will be delivered to it.

Letzte Änderung: 01.12.2020 - Ansprechpartner: Webmaster